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Abstract

Anthropogenic climate change produces two conceptually distinct negative economic externali-
ties. The first is an expected path of climate damage. The second, the focus of this paper, is
an expected path of economic risk. To isolate the climate-risk problem, we consider mean-zero,
symmetric shocks in our 12-period, overlapping generations model. These shocks impact dirty
energy usage (carbon emissions), the relationship between carbon concentration and tempera-
ture, and the connection between temperature and damages. Our model exhibits a de minimis
climate problem absent its shocks. However, due to non-linearities, symmetric shocks deliver
negatively skewed impacts, including the potential for climate disasters. As we show, Pareto-
improving carbon taxation can dramatically lower climate risk, in general, and disaster risk, in
particular. The associated climate-risk tax, which is focused exclusively on limiting climate risk,
can be as large as, or larger than, the carbon average-damage tax, which is focused exclusively
on limiting average damage.
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1 Introduction

Anthropogenic climate change produces two conceptually distinct negative externalities. The first

is a higher expected (average) path of damages. The second is greater volatility in the economy’s

transition path. This paper focuses exclusively on the second externality. It does so via an overlapping

generations (OLG) model with three distinct mean-zero, symmetric shocks. These shocks capture

the man-made climate risks highlighted by Weitzman (2012), Golosov et al. (2014), Barnett et al.

(2020), and others. The first shock determines whether the economy will use more or less dirty energy.

The second shock exacerbates or mitigates the relationship between CO2 emissions and temperature.

Finally, the third shock enlarges or shrinks a key parameter in the climate-damage function.

Our OLG model is intentionally bare bones to isolate the cost of each form of risk propagation.

In the absence of climate shocks, our model produces minimal climate damage. In consort, the three

shocks raise the potential for “climate disasters”, which we define as a drop in aggregate consumption

by more than one third relative to trend.

In our main calibration, with no carbon policy, but with the three sources of risk activated, the

probability, as of time zero, of a climate disaster arising over the next 250 years is more than seven

percent, and nine percent over the next 500 years. We find that disasters can arise due to significant

skewness in the distribution of damages, reflecting the net impact of the model’s non-linear elements.

There are two competing supply-side non-linearities in climate models. First, damages are assumed

to be a non-linear, convex function of global average surface temperature. Second, the average surface

temperature is modeled as a concave, specifically the logarithmic function, of atmospheric CO2. In

our model, the supply-side convexity outweighs the supply-side concavity in determining carbon-risk

damages. Moreover, when it comes to the welfare effects of carbon risk, the skewed supply-side

damages reinforce the skewed demand-side impact arising from risk aversion.

Our paper’s primary goal is finding Pareto-efficient paths of carbon-risk taxes – carbon taxes whose

raison d’etre is not to limit average carbon damage because average damage is intentionally modeled

to be minimal, but to limit downside carbon risk. Unlike prior studies of optimal carbon taxation

in the presence of uncertainty, our model features twelve selfish overlapping generations rather than

a single, intergenerationally altruistic representative agent. Based on 60 years of adulthood—that
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is to say, age 20 to age 80, each of our model’s periods corresponds to five years. Assuming that

current generations are not altruistic toward future generations seems the appropriate framework

for modeling carbon policy, given the carbon footprint of current generations. The generationally-

selfish life-cycle framework immediately focuses attention on using carbon taxation to effect Pareto

improvements—that is, raising the welfare of at least some generations without reducing the welfare

of others. Kotlikoff et al. (2019) study such Pareto-improving carbon taxation in a large-scale OlG

model, albeit in a deterministic setting. As they show, limiting consideration to efficient policies can

materially impact optimal carbon policies.1

Ours is hardly the first quantitative analysis of uncertainty’s importance to optimal carbon pol-

icy. Prior major studies include Brock and Hansen (2017), Gillingham et al. (2015), Jensen and

Traeger (2014), Lemoine and Traeger (2016), Cai et al. (2018), Cai et al. (2013), Daniel et al.

(2019), and Traeger (2019).2 Nor is our model the first to posit selfish, life-cycle behavior. Early

OLG models that consider resource-extraction and the environment include Howarth and Norgaard

(1990), Howarth and Norgaard (1992), Burton (1993), Pecchenino and John (1994), John et al.

(1995) and Marini and Scaramozzino (1995), Howarth and Norgaard (1990), Howarth (1991a,b), Bur-

ton (1993), Kavuncu and Knabb (2005), and Bovenberg and Heijdra (1998, 2002); Heijdra et al.

(2006).3 Howarth (1991a) considers, in general terms, how to analyze economic efficiency in OLG

models in the context of technological shocks.

This said, our model appears to be the first study of optimal carbon-risk tax policy in a large-scale

OLG model with shocks both to the climate system and to the macroeconomy. We use our model to

identify carbon policies that leave the welfare of current generations unchanged, raise the welfare of

future generations by as much as four percent, and lower the probability of a climate disaster from

nine to one percent.

1Kotlikoff et al. (2019) show that single-agent “optimal” tax solutions may not be Pareto efficient in otherwise
identical OLG models. With heterogeneous agents, optimal taxation requires Pareto improvements. Otherwise, all
tax schemes, including those that reduce particular generations to starvation, are “optimal” for the right choice of
social-planner preferences.

2See, e.g., Cai (2020) for a thorough review.
3 Howarth and Norgaard (1990), positing a pure exchange model, and Howarth (1991b), using a two-period OLG

model with capital, point out that policymakers can choose among an infinite number of Pareto efficient paths in the
process of correcting negative environmental externalities. Gerlagh and Keyzer (2001); Gerlagh and van der Zwaan
(2001) consider the choice among such Pareto paths and the potential use of trust-fund policies that provide future
generations with a share of the income derived from the exploitation of natural resources. Gerlagh and van der Zwaan
(2001) also point out that demographics can impact the set of efficient policy paths through their impact on the
economy’s general equilibrium.
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What is our precise definition of a generation’s welfare? Here we follow Blanchard (2019) in focus-

ing on the generation’s expected lifetime utility computed as of time-0 when the policy is initiated.

For current generations, the lifetime utility references the remaining lifetime utility. Moreover, as

in Blanchard (2019), Pareto improvements are defined with reference to expected lifetime utility.4

While achieving a Pareto improvement in terms of expected utility makes sense, there is an infinite

number of such improvements to consider, each with its specific configuration of carbon taxation and

intergenerational redistribution. Kotlikoff et al. (2019) use Auerbach and Kotlikoff (1987)’s figurative

Lump-Sum Redistribution Authority to derive the largest uniform welfare improvement from carbon

taxation across all current and future generations. This solution seems of focal interest because of the

potential political appeal of uniform treatment. However, in our stochastic model, achieving uniform

Pareto gains necessitates state-dependent transfers (see Gottardi and Kubler (2011)). Computing

state-dependent policies goes beyond the scope of this paper. Hence, we confine ourselves here

to carbon taxes cum state-independent, lump-sum transfer policies that achieve Pareto-improving

paths, materially reduce the chances of a climate disaster, and fully compensate current generations

for having to pay the carbon taxation. This compensation is financed by the policy’s time path of

carbon-tax revenue.

Our policy instruments are i) a tax on dirty energy’s use that is either time-invariant, or depends

on the level of carbon in the atmosphere, and ii) a time-varying sharing-rule of each period’s tax

revenues among concomitant generations. Revenue sharing is set, period by period, to ensure that

current generations achieve the same expected utility as under the business as usual (BAU) scenario.

Specifically, a large enough share of revenues is allocated to the oldest generation in period 0 to ensure

that its expected utility is unchanged. All other generations receive the identical share. We follow the

same procedure in periods 1 through T ∗, where T ∗ is the first period in which an equal share provided

to all agents leaves the oldest cohort at time T ∗ as well off, in terms of ex-anted expected utility, as in

BAU. Beyond T ∗ up to the point that carbon tax revenues are zero, we allocate all revenues equally to

all concomitant agents, checking, for each generation after T ∗ that their cum-policy expected utility

is no lower than under BAU.

Our optimal carbon-risk tax policy is set to minimize the chances of reaching a climate-tipping

4An alternative Pareto criterion is an ex interim improvement, where an agent is defined by the time and date-event
of that individual’s birth (see, e.g., Krueger and Kubler (2006)).

4



point subject to achieving a weak (initial generations remain at their BAU expected-utility levels)

Pareto improvement. Reaching a tipping point—that is, experiencing a climate disaster, is defined as

experiencing climate damages that result in a drop in aggregate consumption of more than one third.

The optimal tax policy raises future generations’ expected utilities by up to four percent, depending

on their year of birth, and it lowers the probability of a climate disaster from nine to one percent.

The policy also reduces worst-case damages from 70 percent to 50 percent of GDP. Moreover, the

level of carbon-risk taxation is substantial compared to the average-damage carbon-tax rate.

Our focus on limiting the chance of significant reductions in aggregate consumption is influenced

by Barro and Ursua (2008). Their study collects country-specific historical data on significant declines

in aggregate consumption. Their findings suggest that aggregate consumption drops of more than

one third are very rare, are typically caused by wars, and generally have long-lasting effects on the

regions in question.

Our stochastic OLG model is the barest of bones when it comes to concentrating attention to

the aforementioned three climate risks. The supply side of our model is similar to Cai et al. (2013)

and Nordhaus (2017). Final goods are produced using capital, labor, clean energy, and dirty energy,

the use of which emits CO2 into the atmosphere. Clean energy is assumed to be produced by capital

and labor and is, thus, subsumed in our production function’s capital and labor inputs. Technological

progress, captured by dirty energy’s coefficient in the model’s production function for output, leads,

over time, to the crowding-out of dirty energy. Consequently, in the long run, only clean energy is

used in production. Unlike Kotlikoff et al. (2019), clean energy is not explicitly modeled. Instead, it

is implicitly treated as the economy’s ability to produce, through time, with smaller and, ultimately,

zero reliance on dirty energy.

We adopt the carbon cycle, and temperature equation posited by Golosov et al. (2014), which

simplifies Nordhaus (2017)’s treatment of these elements. Following most of the related literature

(see, e.g., Nordhaus (2017), and the references therein), we assume that higher temperatures lower

total factor productivity. As Nordhaus (2008) points out, “the economic impact of climate change

... is the thorniest issue in climate-change economics”. Weitzman (2012) adds a tipping point to the

standard Nordhaus damage function, which raises damages dramatically for temperature increases

beyond a given level. Below, we follow the specification by Weitzman (2012). Specifically, we posit
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that damages are the following function of excess temperature (relative to its 1900 value), defined as

the global temperature increase TAt :

Dt = 1− 1

1 +
(

1
20.46

TAt
)2

+
(

1
6.081

TAt
)6.754 . (1)

This specification generates damages that are very similar to those in Nordhaus if the global mean

temperature increases by less than 3 degrees Celsius relative to pre-industrial levels. For higher tem-

perature increases, damages are significantly larger. Thus, a 3-degree temperature increase represents

our model’s tipping point. Such tipping points include losing much of the Amazon rain forest, faster

onset of El Niño, the reversal of the Gulf Stream and other ocean circulatory systems, the melting

of Greenland’s ice sheet, the loss of Siberia’s permafrost leading to a massive methane gas release,

and the collapse of the West Antarctic ice shelf.

As indicated above, climate change uncertainty comes in three forms. First, dirty energy’s share

in the production function is subject to symmetric shocks along its path, which trends to zero. Since

these shocks can be negative as well as positive, CO2 emissions might remain high, at current or higher

levels, for an extended period or might decrease dramatically within a matter of decades. Second, the

so-called climate-sensitivity parameter, which determines the increase in temperature arising from

increases in CO2, is stochastic, meaning the sensitivity of temperature to carbon concentration can

fall as well as rise. Third, the parameter for the quadratic term in the damage function, which

governs the probability of crossing the tipping point in damages, is stochastic. We model all three

processes as random walks.

We begin by solving the model with no uncertainty, assuming dirty energy is entirely supplanted

by clean energy in 120 years. Using Weitzman (2012)’s damage function, damages from climate

change are very small. Consequently, efficient, time-invariant dirty energy taxes are, in this context,

quite minor as are the efficiency gains from carbon taxation. Stated differently, our model’s optimal

carbon average-damage tax is de minimis.

We assume throughout that the agents’ coefficients of relative risk aversion are 2. This is a

moderate-sized coefficient compared to that assumed in the literature (see, e.g., Cai (2020) and

references therein). Nevertheless, since damages are skewed, and agents are risk-averse, the average
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welfare loss is significant. Indeed, as discussed, when all three shocks occur simultaneously, a simple

scheme that imposes a carbon tax at t = 0, which then increases significantly when temperatures

increase, can lead to substantial welfare gains for all generations. Initial generations only gain about

0.1 percent. Welfare gains become larger in about 100 years, with generations born in 150 years

gaining about four percent and generations born in 200 years gaining about five percent. Welfare

gains then slowly decline, through time, to about three percent.

The paper focuses, at first, exclusively on our dirty-energy usage shock. Adding this shock does

not change the expected end date of dirty energy usage. However, it does increase the chances

that emissions will remain high over the next 100 years. This, in turn, increases the potential

for climate tipping. Our second experiment adds shocks to the climate-sensitivity parameter in

addition to the energy-usage shocks. Energy-usage shocks turn out to be a prerequisite for generating

climate disasters. The climate-sensitivity parameter plays a crucial role in modern climate modeling.

Unfortunately, there is much disagreement about its value (see, e.g., Allen and Frame (2007), Forster

et al. (2020), Knutti et al. (2017), or Roe and Baker (2007)). Based on our reading of the climate-

science and economics literature, we model this parameter as a random walk with reflecting barriers,

where we set the barriers to -30 and +30 percent around the mean. In conjunction with the usage

shock, this shock makes climate disasters much more likely, with their probability increasing above

five percentage points. The time-invariant, Pareto-improving carbon taxes can help, but not enough

to lower the climate-disaster probability below 2.7 percent for these two shocks.

Our final step is to add the damage-function parameter shock to the other two and, thereby,

capture climate-damage tipping points. We assume that this parameter shock follows a random walk

with an upper reflecting bound and becomes fixed when the temperate reaches the tipping point. In

the presence of all three types of uncertainty, the model’s disaster probability increases to almost

nine percent. With this degree of risk, substantially higher fixed (through time) carbon-risk taxes are

Pareto-improving. Moreover, fixed carbon-risk taxes can reduce the probability of climate disasters

to around 3 percent. However, as we demonstrate, having CO2-dependent taxes, the likelihood can

be reduced to below one percent.

The remainder of the paper is organized as follows: Section 2 presents our model. Section 3

discusses the calibration strategy and reports results for a baseline calibration without uncertainty.
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Section 4 considers uncertain dirty energy usage (equivalently, CO2 emissions). Section 5 adds our

CO2-temperature sensitivity shock. Section 6 presents the full model with all three shocks, stressing

that the carbon-risk tax – the tax needed solely to mitigate carbon risk – can be as large or larger

than the carbon average-damage tax – the tax needed solely to mitigate average carbon damage.

Section 7 concludes.

2 Model

Time is discrete and indexed by t = 0, 1, . . . . In each period, a cohort of identical agents enters the

economy, retires after 10 periods, and dies after 12 periods. Each of our model’s periods corresponds

to five years. A representative firm produces a single consumption good by using capital, labor, and

dirty energy as inputs. Dirty energy is produced using capital and labor.

2.1 Firms

The final goods are produced via

Yt = At(Dt) ·Kγtα
1t · L

γt(1−α)
1t · E1−γt

t ,+(1− δ̄)(K1t +K2t) (2)

where Yt is gross output, the price of which is normalized to 1, and At, Dt, K1t, L1t, and Et refer

to total factor productivity, climate damage, capital, labor, and dirty energy, respectively. The

parameter α represents the capital share. As detailed below in subsection 2.4, the dirty energy’s

factor share, 1−γt, evolves stochastically as it trends toward 0. Its stochastic path captures our first

shock – carbon-usage uncertainty.

Dirty energy is produced with capital and labor—that is, with no fixed or quasi-fixed factors. This

is consistent with the modeling in many prior studies (e.g., Cai et al. (2013)). Since financial markets

are incomplete and agents are heterogeneous, adding such factors or incorporating adjustment costs

would bring the firm’s objective function into question—that is, the firm’s stochastic discount factor

is not uniquely determined and different possible stochastic discount factors lead to different profit-
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maximizing production plans.5 Thus:

Et = Kθ
2t · L1−θ

2t , (3)

where K2t and L2t, respectively refer to capital and labor used in producing dirty energy.6 Final goods

producers purchase dirty energy at the producer price, pt, plus the carbon tax, τt. Each period’s

revenue from the carbon tax is redistributed among concomitant generations. Capital depreciates at

a rate of δ̄, independent of whether it is used in the dirty energy or final goods sectors. CO2 emissions

in period t emissions are proportional to Et with a proportionality factor calibrated to roughly match

the industrial emissions of 2015.

Our formulation assumes that elasticities of substitution between dirty energy, capital, and labor

equal 1. As Hassler et al. (2012) point out, this is unrealistic when the time period is short. In fact,

they find that a Leontief-specification provides a good fit to annual data. However, Hassler et al.

(2018) make this Cobb-Douglas (CD) assumption in a model, which, like ours, has periods lasting for

10 years. However, our time period, which, as indicated, corresponds to five years, is relatively short,

suggesting the CD assumption is not ideal. In a sensitivity analysis in Section 5, we consider the

case where output is produced by a Leontief function of energy and an intermediate input. Energy is

Cobb-Douglas in dirty energy and clean energy where both of these energy sources are, themselves,

Cobb-Douglas in capital and labor. The intermediate input is produced by a Cobb-Douglas function

of capital and labor. In this very simple setup the possibilities of Pareto-improving carbon-taxes

turn out to be very limited.7 The last supply-side point concerns capital’s share in producing energy,

5The incompleteness reflects the inability of the current generations to trade, in this context pool risk, with proxi-
mate, let alone distant future generations. This, in turn, means that differently aged current owners of assets, which
are not valued solely based on their current marginal productivity, will view those assets as having different risk-sharing
properties in future states of nature. Hence, they will not agree either on how such assets should be valued or on how
they should be used or augmented via investment or disinvestment.

6We normalize the TFP in dirty energy production at 1 with no loss of generality.
7We intend to explore this issue in future work by positing a CES function in two arguments with an intermediate

elasitcity of substitution. The outer CES function could incorporate limited ability to substitute between energy and
the other CD input, where the inner CES could accommodate relatively high substitutability between clean and dirty
energy (see e.g. Papageorgiou et al. (2017) for estimates of the key parameters). Whether these elements would
militate toward higher or lower carbon taxation is unclear. An even more realistic treatment would make the dirty
energy function depend, not just on capital and labor, but also on the costly extraction of fossil fuels. Furthermore,
clean energy would depend on capital and labor as well as a fixed factor, e.g., land, which, as in Kotlikoff et al. (2019),
would proxies for a physical limitation, such as the availability of sunshine, on producing clean energy. However, due to
the above-mentioned incompleteness of financial markets, entertaining such a more realistic supply-side specification,
would raise the aforementioned intractable valuation problem.
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which we assume is the same as that for final goods production – an assumption at odds with Barrage

(2020). However, relaxing this assumption would muddy the notation without significantly altering

our quantitative results.

2.2 Households

Households live for A periods. Those born at time t maximize lifetime expected utility, given by

Ut = Et
A∑
j=1

βj
C1−σ
t+j−1,j − 1

1− σ
, (4)

subject to

Ct,j + at+1,j+1 = (1 + rt)at,j + wt − θt,j, (5)

where β is the time preference factor, Ct,j, at,j, wt,j correspond to consumption, assets, and wages of

generation j at time t, respectively, and labor supply is normalized at 1. The parameter θt,j denotes

the possibly state-specific net tax paid by the agent j at time t. The allocation of capital between

dirty energy, and goods production is given by

A∑
j=1

aKt,j = Kt = K1t +K2t. (6)

Households born prior to t = 0 maximize their remaining lifetime utilities.

2.3 Modeling climate change as a negative externality

We model the carbon cycle as in Golosov et al. (2014). The temperature Tt in period t is determined

by the stock of carbon in the atmosphere, St,

Tt = λt
log(St/S)

log(2)
, (7)

where S is the pre-industrial carbon stock. We model λt in a stochastic manner.8 Thus, λt is our

model’s second key shock.

8We specify the exact stochastic process below in section 2.4.
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Following Golosov et al. (2014), we assume that the CO2 stock in the atmosphere has two

components—that is,

St = S1t + S2t, (8)

where

S1t = φ · ξ · Et + δS1 · S1,t−1, (9)

and where

S2t = (1− φ) · ξ · Et + δS2 · S2,t−1. (10)

The depreciation parameters satisfy δS2 < δS1. We calibrate the former at a low value and the later

at a high value again following Golosov et al. (2014). Hence, S1t is a slowly depreciating stock of

carbon, whereas S2t is a rapidly depreciating stock. The parameters φ and ξ control the fraction of

CO2 emissions entering the atmosphere. We take φ, ξ, and the depreciation parameters as fixed. As

Golosov et al. (2014) point out, there is no consensus in the literature concerning the values of these

parameters. In any case, our main results are robust to moderate differences in these parameters as

well as to time-varying shocks they may experience.

Next, we slightly modify Weitzman (2012)’s formulation of the temperature damage function (cf.

equation (1)) such that it can vary over time—that is,

Dt = 1− 1

1 +
(

1
20.46

TAt
)2

+
(

1
2·TPtT

A
t

)6.754 , (11)

where the term TAt refers to global mean surface temperature relative to its 1900 value. Note that the

term TPt in the denominator of equation (11) is our third shock. Weitzman calibrates 2 ·TPt = 6.081

to be constant over time. This corresponds to a climate tipping point occurring at about 3 degrees

excess temperature. Below 3 degrees of excess temperature, the Weitzman tipping-point term in

the damage function makes a trivial difference to climate damages. Beyond 3 degrees, it begins to

dominate the function.

Climate change reduces output productivity according to

At = (1−Dt) · Z, (12)
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where Z is the constant, non-stochastic production efficiency coefficient—that is, we ignore secular

growth for the sake of simplicity.

There is an active debate on the specification of the damage function. Hänsel et al. (2020)

and Glanemann et al. (2020) strongly criticize the damage function posited by Nordhaus in his

DICE model (see Nordhaus (2017)) and show that alternative, arguably more realistic specifications,

lead to much larger damages for 3 degrees or larger increases in temperature and thus to very different

optimal carbon taxes. Glanemann et al. (2020), building on Burke et al. (2015), derive a damage

function that is similar to our formulation. As Botzen and van den Bergh (2012) work suggests, our

damage function specified in equation (11) is very similar to Nordhaus’s for temperature increases

below 3 degrees. Hänsel et al. (2020) follow Howard and Sterner (2017) and use Nordhaus’ func-

tional form, simply changing parameters so that damages reach 6.7 percent of output for a 3-degree

temperature increase, as opposed to only 2.1 percent in Nordhaus’s calibration. Below, we entertain

their damage function in checking the sensitivity of our findings. Optimal taxes are higher, but

the probability of disaster is lower under this alternative specification. Simply using the Nordhaus

(2017) damages formulation rules out climate disasters and leads to much lower optimal taxes in our

model. In 6 we allow for the tipping point to be stochastic. This can be viewed as a generalization

of Nordhaus’s formulation. With some probability, only Nordhaus’s damage function is relevant. If

this is not the case, catastrophic damages can arise.

2.4 Stochastic processes

We now specify the stochastic processes for i) the dirty energy share in the production function,

1 − γ, ii) the climate sensitivity parameter, λ, and iii) the tipping point, TP . We assume that all

three shocks follow random walks:

1. The first shock considers the innovation/emissions uncertainty, and is specified as

γt = γt−1 + εγt, (13)

for γt ≤ 1, with εγt ≥ 0, Eεγt = 0.04, and γ0 = 0.9. γt = 1 is an absorbing state, which is

reached, on average, in 120 years. To ensure a solution to the model, we assume γ60 = 1—that
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is, after 300 years, all dirty energy usage ends for certain. This formulation of the γ process

captures the gradual decline in the use of dirty energy, punctuated by periodic new dirty energy

discoveries that temporarily reverse this trend.

2. The second shock involves the degree to which higher CO2 translates into higher temperatures.

Here we assume that the climate sensitivity parameter, λ, follows a random walk,

λt = λt−1 + ελt, (14)

with ελt being i.i.d. with mean zero and reflecting barriers, namely lower and upper bounds, λ

and λ.

3. The third form of uncertainty concerns damages, the uncertainty of which arises due to un-

certainty in the model’s tipping-point parameter, TP . We assume that as long as the actual

temperature is below the tipping point, the latter follows a random walk with innovation εTP—

that is,

TPt = TPt−1 + εTP,t, (15)

where εTP,t is i.i.d. with mean zero, but with a stopping criterion. If, at some period t,

atmospheric temperature, TAt , reaches the tipping point, TPt, the tipping point remains fixed.

Moreover, we assume that there are reflecting barriers—that is, there exists a lower bound, TP ,

as well as an upper bound, TP . These bounds ensure that the tipping point cannot be too low

and that if temperature increases are extreme, a tipping point is reached eventually.

Note that we model emissions uncertainty in a very reduced-form model. Clearly, technological

change is, in good part, endogenous, and the speed of green innovations would undoubtedly react to

the cost of dirty energy and hence to carbon-taxes (see, e.g., Aghion et al. (2016) and Acemoglu et al.

(2012)). If carbon taxes led to more significant and faster green innovation, a given carbon tax would

represent a more powerful climate cleaner as assumed in our model. Moreover, by construction,

optimal taxes are always higher than in the model where innovations are entirely exogenous. For a

given optimal tax-rate for the exogenous innovations model, welfare losses of all current generations

(except the 12 periods old) are strictly smaller with endogenous innovations. Hence larger taxes can
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be sustained, and since they (mechanically) reduce the probability of climate disasters, they will be

better. A realistic calibration of this effect is beyond the scope of our analysis.

Our assumption that the climate-sensitivity parameter, which controls the relationship between

carbon and temperature, is uncertain, aligns with Hassler et al. (2018)’s modeling. However, recent

evidence, including Adams and Dessler (2019), suggests scientists have obtained a more precise

understanding of this key parameter’s value. Section 5 below examines the sensitivity of our results

to this uncertainty. Specifically, we consider the case where the variance of innovation tends to zero

over time and, hence, eventually the climate sensitivity becomes deterministic.

Treating the damage function as uncertain reflects two realities. First, the modern world has yet

to experience major sustained temperature increases. Hence, we cannot treat the past relationship

between relatively small temperature changes and damages as necessarily indicative of the sizes of

damages arising with significant temperature changes. Second, there is ample evidence that the

temperature-damage relationship is highly non-linear (see Burke et al. (2015)). Hence, it seems

realistic to assume that the “tipping point”at which this happens varies stochastically over time.9

2.5 Government

In each period, the government imposes taxes on dirty energy use and distributes the revenues among

extant generations. As indicated, carbon-risk taxation as well as the distribution of carbon-risk

revenues cease when γt reaches 1.

We consider both time-invariant as well as carbon-dependent carbon-risk taxes.10 To find the

optimal tax rate in the time-invariant case, we compute different tax rates on a grid. As explained in

the introduction, for each tax rate, we implement transfers that use the time path of tax revenues to

ensure that each current year enjoys at least their BAU level of expected remaining lifetime utility and

that all subsequent generations experience a higher-than-BAU level of expected remaining lifetime

utility. In the case of a CO2-dependent tax policy, we add a linear-in-CO2 component to the tax

function that delivers a significantly better path of ex-ante expected utility than the fixed tax.

In both the time-invariant and carbon-dependent carbon-risk tax cases, we couple carbon taxation

9This statement references mankind’s, if not nature’s, perspective.
10Permitting the carbon to grow at a fixed rate did not materially alter our results.
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with time-changing, but state-invariant, generation-specific sharing of carbon-tax revenue. Recall,

that generation-specific revenue shares are adjusted in the first 12 periods to ensure that each initial

cohort has the same expected remaining lifetime utility under the policy as without it. Furthermore,

after the first 12 periods, revenue shares are held fixed at their values in period 12.

We choose the transfers and taxes to guarantee a Pareto-improvement for all current and future

generations and to minimize the probability of climate disasters. This is equivalent to maximizing

the tax rate under the constraint that no current or future generation loses. In practice, this means

keeping current generations at their status-quo welfare (expected remaining lifetime utility) levels

and improving the welfare levels (expected lifetime utility) of all future generations.

2.6 Recursive formulation of the OLG model

The aggregate state variables in our model are S1t, S2t, γt, λt, TPt, and the aggregate capital stock is

Kt. Optimal policies are functions of the aggregate state variables, including the cross-generational

distribution of cash on hand. Our computation technique is the projection method developed in

Marcet (1988), Marcet and Marshall (1994), Marcet and Lorenzoni (2001), and Judd et al. (2011).

Our implementation follows Krusell and Smith (1998), in general, and Kubler and Scheidegger (2019),

in particular, by condensing the distribution of assets across agents into one state variable.

In handling the short-term non-stationary policy, we modify the method by Maliar et al. (2015).

Stationary dynamic OLG models are generally solved by projecting the economy forward over a long

period of time, using the model’s Euler conditions to determine optimal choices conditional on the

guessed functions, and then updating guessed policy functions using the associated time-series data

on optimal choices and the period-specific projected state vector. When a policy is temporarily non-

stationary, as is our case, the data projected over the periods of non-stationarity captures only one

possible path of the non-stationary policy. To handle this problem, we generate a large number of

projections and use the data projected for each time period to update the guessed policy functions

for that period.

Agents forecast their future consumption as a function of this condensed state variable and the

aggregate states, and they choose an optimal investment based on these forecasts. In equilibrium,

the forecasts are almost accurate (within a relative consumption error of at most 10−3, which trans-
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lates directly into the relative error in consumption-equivalent Euler equations). We approximate

the forecasts numerically using Gaussian processes (see, e.g., Scheidegger and Bilionis (2019), and

references therein), and we solve for the forecasts using a simulation-based method. For more details,

we refer to Kubler and Scheidegger (2019).

Government policies are a function of time and, potentially, the amount of carbon. For the

computation of taxes and transfers, we, therefore, include calendar time, t = 0, 1, . . ., as a state

variable. Since the economy is non-stationary until only clean energy is used (i.e., until γt = 1), it

is crucial to simulate the first 60 periods (i.e., 300 years until we enforce γ = 1) often to generate

good approximations, particularly given the potential for rare events. This is the just mentioned

cross-sectional data requirement. We find that 100 simulations of the first 60 periods typically suffice

for good numerical results.

We fix the initial conditions at t = 0 by assuming that agents live in a deterministic economy

with γ = 0.9 but a constant level of CO2 in the atmosphere through t = −5 (i.e., in 25 years) and

then suddenly discover the potential for climate change.

Note that in our numerical results, we report probabilities of climate disasters obtained via Monte

Carlo simulations. Specifically, we simulate the economy for 100 model-periods (corresponding to 500

years) starting at the initial condition. We repeat this simulation 5000 times, reporting the relative

frequency of paths where a climate disaster occurs as the “probability” of a climate disaster.

2.7 Welfare analysis

The welfare of current and future generations is measured as their expected utility at time zero.

We report welfare changes as consumption equivalents—that is, given our CRRA specification for

the utility function with a coefficient of relative risk aversion of σ, let Ut denote expected utility of

generation t in the BAU scenario, and let Ũt denote the expected utility with carbon taxes in place.

We then compute the consumption-equivalent factor,

(
Ũt
Ut

) 1
1−σ

− 1. (16)
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The consumption-equivalent factor tells us the higher or lower percentage level of consumption an

agent would require, in all states arising under BAU, to achieve the same expected utility as under

the policy in question.

3 Calibration

Households live for twelve periods—that is, A = 12, where each period corresponds to five years as

in Nordhaus (2015). We assume that the capital shares in producing output and energy, α and θ,

respectively, both equal 0.3. We set the capital depreciation rate, δ̄ to 0.2. The coefficient of relative

risk aversion, σ, is set to 2.0, and the time preference factor, β, is 0.99, leading to an average annual

return to capital of about 3 percent. Moreover, through each agent’s tenth period, we use a 12-period

version of the age-earnings profile as in Kotlikoff et al. (2019) and, after that, assume that the agents

work on a 35 percent basis in periods 11 and 12. Having agents continue to work at the end of life

proxies for a state-pension system.

In addition, following Golosov et al. (2014), we fix ξ at 0.4, and φ at 0.5. Recall from equa-

tions (8), (9), and (10) that ξ determines, in part, the degree to which dirty-energy production

generates slowly as well as rapidly depleting atmospheric CO2. The coefficient, φ, in turn, deter-

mines the shares of dirty energy emissions that end up as slowly or rapidly depreciating atmospheric

CO2. The slow and fast depreciation rates, δS1 and δS2, are set at 1.0 and 0.99, respectively. These

parameters also coincide, on a period-adjusted basis, with those in Golosov et al. (2014). As in

Golosov et al. (2014), we set λ0 at 3.0, and following Weitzman (2012), we set TP0 at 3.04. Finally,

we calibrate ι, the emissions-proportionality factor, to match initial emissions at 30 GtCO2/year.11

3.1 Results for the deterministic benchmark case

Our benchmark model is the OLG model with no uncertainty. As mentioned, we assume a downward

trend in γ. Since, to date, there is no clear long-run decline in the dirty-energy share of global energy

production (see Hassler et al. (2018)), this assumption is admittedly optimistic.

11Nordhaus (2017) states that 2015 CO2 emissions from industrial activity were around 35.85 GtCO2/year). Details
on ι’s calculation are available from the authors.
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Figure 1: Excess temperature (left panel) and damages (right panel) over the next 500 years—that is, 100 model
periods.

Thanks to the downward trend in γ, the solution entails CO2 emissions decreasing monotonically

and reaching zero after 24 periods—that is, 125 years. The maximum (excess) temperature is slightly

below 2.8 degrees, and the maximum damages are less than 2.5 percent of the final output. Figure 1

depicts how temperature and damages evolve over time.

The average return to capital in this baseline deterministic calibration is about 3 percent per year.

Using a grid search and lump-sum inter-generational transfers as in Kotlikoff et al. (2019), we find

an optimal uniform, welfare-improving carbon-tax of roughly 10 percent that increases the expected

utility of all current and future generations by roughly 0.1 percent. Hence, in the absence of risk,

there is essentially no scope/need for a carbon-tax policy.

If we restrict the Pareto policy to a maximum uniform increase in the expected utilities of those

born in the future, leaving unchanged expected remaining lifetime utilities of initial (t = 0) gener-

ations, the optimal tax is less than 5 percent. It barely increases the expected utility of all future

generations born after 100 years.

This paper’s goal is to understand the importance of carbon risk. One means of making this

assessment is to compare the sizes of optimal carbon taxes with and without such risk. As just

indicated, absent shocks, our model suggests a quite limited role for carbon taxation. This is to be

expected since all three of the model’s key emission-generating parameters have zero means.
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To compare the optimal carbon tax – the carbon average-damage tax – needed to deal solely with

average emissions with that needed to deal solely with risky emissions – the carbon-risk tax, we need

to specify a reasonable average path of emissions in our deterministic model. To do so, we set εγ to

0.02. The transition to clean energy now takes 250 years (50 model periods) instead of 125 years

above. Consequently, the temperature will increase by 4.5 degrees. This results in damages of about

10 percent of GDP after 150 years, peaking at about 18 percent of GDP after 250 years, and then

slowly decreasing after that. Welfare losses to future generations are now substantial – the welfare of

generations born in 150 years will be about 6.5 percent lower than the welfare of agents born today.

However, the highest tax rate compatible with not over-compensating current generations is only

about 15 percent, which will produce welfare gains of up to 3.5 percent for future generations born

after 250 years12.

4 Uncertain CO2 emissions

The crucial elements of uncertainty in our setup run through CO2 emissions and the possibility that

the share of dirty energy will remain large over the next 50 years or so. To model this issue, we

assume, as explained above, that εγ,t, the i.i.d. shock to dirty energy’s share, has a positive variance.

Moreover, after 60 periods—that is, after some 300 years, we set γ60 to 1 if it has not reached this value

already. The crucial aspect of this form of uncertainty is that it makes potential long-run damages

much more significant. Once CO2 is emitted, about 20 percent remains a permanent feature of the

atmosphere. This, in turn, means permanent planetary heating, which implies permanent damages.

We assume the following values for this shock:

εγt =


−0.05 with probability 0.4,

0.05 with probability 0.4,

0.2 with probability 0.2.

12Keeping initial generations whole and ending transfers when dirty energy usage ends rules out higher tax-rate
policies that would more than compensate initial generations and, on balance, further help future generations by
further improving their climate despite making them pay a larger fiscal bill.
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Moreover, we set γ = 0.88 as the reflecting lower boundary. This rules out the dirty energy’s

production share rising significantly relative to the current status quo. Note that, on average, γ

increases by 0.04 in every period, as in the deterministic calibration above. However, it can vary

substantially over time. Indeed, in the worst-case scenario, it goes down to 0.88 and stays there for

60 model periods. However, this worst-case scenario has a de minimis probability.

While our formulation of the energy-usage shock lacks micro-foundations, it succinctly captures

the qualitative features of this form of uncertainty. Further research, such as Acemoglu et al. (2016),

may provide such foundations. Nevertheless, as we now describe, our exercise shows that a slow

transition to clean energy can dramatically raise the probability of a climate disaster.

4.1 Business as usual with shocks to dirty energy usage

We now consider shocks to dirty energy usage, starting with the BAU equilibrium. Figures 2, 3, and

4 show the distribution of TFP-damages and temperatures for periods 20 (100 years), 40 (200 years)

and 100 (500 years). All histograms show results for 1500 simulations. 13 Note that major economic
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Figure 2: Histogram of damages (left panel) and temperatures (right panel) after 100 years for BAU case with only
shocks to γ.

13We report the probabilities of climate disasters using 5000 simulations, but use only 1500 simulations for the
histograms.
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Figure 3: Distribution of damages (left panel) and temperatures (right panel) after 200 years for the BAU case with
only shocks to γ.
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Figure 4: Histogram of damages (left panel) and temperatures (right panel) after 500 years for the case of the BAU
case with only shocks to γ.

damages can arise if dirty energy is used for an extended period. Since the transition to green energy

can be delayed for many periods, catastrophic damages are possible after 40 periods—that is, 200

years. Figure 3 shows that the worst-case scenario, after 200 years, corresponds to an almost 30
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percent reduction in GDP. Figure 4 indicates that after 500 years, there is visible recovery and the

damages, with a high probability, are very small. However, some of the worst-case scenarios still

lead to significant damages as well as large long-run increases in temperature. When consumption

disasters arise, which happens roughly 1 percent of the time, they typically last several decades and

reduce aggregate consumption by much more than one third. However, in this specification, none

of these consumption disasters turn out to be permanent. This reflects our assumption that only

about 60 percent of CO2 in the atmosphere is permanent, with the remaining 40 percent depreciating

slowly over time.

4.2 Optimal carbon policy with energy usage shocks

This subsection considers optimal carbon policy assuming just one shock, namely the shock to the

decline in dirty energy usage specified above. Our optimal, fixed carbon tax-rate calculation generates

a rate of τ = 0.25—that is, a 25 percent tax on dirty energy. With this tax rate, generations born

200 years into the future gain 1.5 percent in consumption equivalence. Current generations, as well

as generations in the near future, gain about 0.1 to 0.5 percent. After roughly 125 years—that is, in

25 model periods, the welfare gains become larger, reaching their maximum of 1.5 percent in about

200 years. In about 175 years, the welfare gains are roughly 1.3 percent. Climate disasters become

very unlikely with a probability below 0.5 percent.14

Figures 5, 6 and 7 show that temperatures after 100 years, and, in particular, after 200 and 500

years are clearly lower than in the BAU case, leading to smaller damages. The shift in temperature

appears small at first but, given our form of the damage function, in the high-temperature ranges,

small temperature differences make a significant difference with regard to damage.

Clearly, Pareto-improving carbon-risk taxes do not, in this case, entirely prevent deleterious cli-

mate change. In particular, significant losses after 200 years and even after 500 years are possible, with

temperature increases that are often far beyond that agreed in the Paris Accord. Even higher carbon

taxes would limit this problem. However, levying them requires compensating current generations

by extracting higher payments from future generations. Unless such payments were state-contingent,

they would be imposed on generations born into states with significant climate damages. We leave for

14In 5000 simulated paths, only one climate disaster occurred.
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Figure 5: Distribution of damages (left panel) and temperature (right panel) after 100 years for the scenario with
only shocks to γ. A tax rate of 25 percent on dirty energy is assumed.
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Figure 6: Histogram of damages (left panel) and temperature (right panel) after 200 years for the scenario with
energy usage shocks. A tax rate of 25 percent on dirty energy is assumed.

further research the degree to which state- and generation-contingent net taxes can further mitigate

climate change.
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Figure 7: Distribution of damages (left panel) and temperature (right panel) after 500 years for the scenario with
only shocks to γ. A tax rate of 25 percent on dirty energy is assumed.

5 Shocks to both dirty energy usage and temperature

In this section, we combine uncertainty about future dirty energy usage and, thus, emissions with

uncertainty about the degree to which CO2 emissions translates into higher temperatures. While

the climate-sensitivity coefficient plays a crucial role in understanding the effects of CO2 emissions

on global warming, there is, unfortunately, little scientific consensus on its value. As Knutti et al.

(2017) put it, “Equilibrium climate sensitivity characterizes the Earth’s long-term global temperature

response to increased atmospheric CO2 concentration. It has reached almost iconic status as the

single number that describes how severe climate change will be. The consensus on the likely range for

climate sensitivity of 1.5 to 4.5 degrees Celsius today is the same as given by Jule Charney in 1979.”

The ratio of the highest estimate to the lowest is roughly three! A large part of this parameter

uncertainty is typically attributed to model uncertainty. In other words, researchers believe that the

time variation in the true parameter is much smaller than this range, but that our current climate

models cannot determine this true parameter. However, there is some evidence that even beyond

model-uncertainty, the equilibrium climate sensitivity varies stochastically (see, e.g., Roe and Baker

(2007)) through time.

Unfortunately, the climate model that we adopted from Golosov et al. (2014) is too simplistic
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to model this realistically. In order to get an idea of the impact of stochastic climate sensitivity,

we model its variation by assuming that λt follows a random walk. Let us consider the following

specification for shocks to λ, which translates CO2 levels into the forcing variable that raises the

average global temperature. We assume that each period the shock ελ,t can take two values—that is,

ελ,t =

 −
1
30

with prob 1
2
,

+ 1
30

with prob 1
2
.

We assume that λ = 0.7λ0, λ = 1.3λ0 are reflecting barriers for the random walk. This specification

does not capture all recognized uncertainty about the climate sensitivity parameter. As Forster et al.

(2020) point out, this is much larger and would put the reflecting barriers well below 0.5 and well

above 1.5. Hence, our calibration is highly conservative—that is, the actual uncertainty is likely

much larger.15 Our results therefore constitute a lower bound on the possibility of climate disasters.

5.1 Business as usual with dirty energy usage and temperature shocks

As in the previous section, we first compute the equilibrium for an economy with no carbon tax.

Figures 8, 9, and 10 show the distribution of TFP-damages and temperature for the periods 20 (100

years), 40 (200 years), and 100 (500 years).

Comparing figures 8, 9, and 10 with figures 2, 3, and 4 from above, it becomes evident that the

tails become larger. After 200 years, extreme temperatures and extreme damages now occur much

more frequently16. Furthermore, after 500 years—that is, in the very long run, substantial damages

can persist.

Note that the histograms do not show the fact that with a time-varying climate sensitivity pa-

rameter, output and aggregate consumption become very volatile when the CO2 concentration in

the atmosphere is high. Given our specification of the damage functions, an increase in the climate

sensitivity from λ to λ changes the temperature by more than 60 percent, which can change the

damages from relatively small to quite large when the initial excess temperature is above 3 degrees.

15However, much of it is model uncertainty which we cannot describe without having an explicit model of how
learning about this parameter occurs over time.

16It is important to note that the scales differ across the examples.
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Figure 8: Histogram of damages (left panel) and temperature (right panel) after 100 years for the BAU case with
shocks to γ and λ.
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Figure 9: Distribution of damages (left panel) and temperature (right panel) after 200 years for the BAU case with
shocks to γ and λ.

Using our specifications here, climate disasters occur frequently. In about five percent of the cases,

aggregate consumption drops by more than one third. These drops typically last more than 100

years, in some cases, up to 350-400 years, and in some cases forever.
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Figure 10: Distribution of damages (left panel) and temperature (right panel) after 500 years for the BAU case with
shocks to γ and λ.

Weitzman (2009) and Weitzman (2012) describes scenarios where the said uncertainties can lead

to catastrophic outcomes of climate change. However, unlike Weitzman (2009), the events in our

model are not climate catastrophes that push expected utility to minus infinity. In our calibration,

aggregate consumption never drops by more than two thirds. Since this happens with relatively low

probability, the effect on average/expected utility is modest—that is, it drops, measured in certainty

equivalents, by around 5 percent for some generations in the future.

5.2 Optimal carbon policy with energy usage and temperature shocks

As in the previous numerical example, the fact that aggregate consumption can decrease substantially

in the future does not necessarily mean that higher taxes today are feasible if current generations

need to be compensated. The fact that in 500 or even 1000 years, economic damages can be dramatic

offers little guidance on how to achieve a Pareto improvement today.

In this two-shock case, the “optimal”fixed tax rate on dirty energy is 20 percent tax. Genera-

tions born 150 years from now or even later gain about 2 percent in certainty equivalence, and the

probability of a climate disaster is reduced from more than 5 percent to around 2.5 percent.

Note that this carbon tax is 5 percent lower than the one we found above for the case of no climate
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uncertainty. The reason for this is that for generations born within the first five periods, an increase

in precautionary savings that is caused by climate uncertainty counteracts the negative effects of the

extra uncertainty, and they can no longer be compensated for facing a tax rate of 25 percent.

5.3 Sensitivity analysis

To examine the robustness of the result we conduct three different sensitivity analyses. First, we

alter the stochastic process for the climate sensitivity parameter, λ, and assume that eventually this

parameter becomes deterministic. Second, we consider Hänsel et al. (2020)’s damage function. Third,

we assume that energy and an intermediate good are perfect complements in a Leontief production

function.

5.3.1 Decreasing uncertainty about climate sensitivity

We assume here that the variance of the innovation in (14) decreases over time and becomes deter-

ministic in 30 periods (150 years). In particular, for t ≥ 30 we take

ελ,t =

 −
30−t
30
· (30− t) with prob 1

2
,

+30−t
30

with prob 1
2
,

and we take εt, = 0 for t > 30. As before, λ = 0.7 and λ = 1.3.

The following table shows the impact of a long-run decline in climate sensitivity uncertainty.

The table’s results are quite robust to the precise specification of the stochastic process for λ. The

const. vol. decreasing vol.
Probability of disaster, BAU 0.05 0.038

Probability of disaster, opt. tax 0.025 0.012
Optimal fixed tax 0.2 0.2

Welfare gains 0.02 0.02

Table 1: Sensitivity to stochastic climate sensitivity

probability of disaster decreases significantly in the BAU scenario. This is due to the fact that in

the base-case specification disaster can happen well after the full transition to clean energy. Once γ

reaches 1, the temperature starts dropping with certainty as soon as λ becomes deterministic. This
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is obviously not what most climate models predict, therefore we chose to keep λ random in our main

calibration.

5.3.2 Alternative damage function

Following Hänsel et al. (2020), we use the “preferred specification”of damages from Howard and

Sterner (2017). We assume that D(TAt ) = 0.007438(TAt )2. Unlike in our base-case specification, there

are no tipping points in this formulation. However, damages are much larger than in Nordhaus’s

specification, and clearly, the damage function is only well defined for TAt < 11.56 since otherwise

damages are larger than 100 percent of GDP.

The following table 2 compares the key results for the two damage functions. This table shows

Weitzman Hansel et al.
Probability of disaster, BAU 0.05 0.016

Probability of disaster, opt. tax 0.025 0.003
Optimal fixed tax 0.2 0.35

Welfare gains 0.02 0.06

Table 2: Sensitivity with respect to the form of the damage function.

that the results depend crucially on the specification of the damage function. With the alternative

damage function, climate disasters are much less common, yet welfare gains from carbon taxation and

the optimal tax rate are much higher. This is easily explained by the fact that average damages are

much higher with this damage function, but extreme damages only come with very high temperature-

increases.

The analysis shows that the proper specification of the damage function remains an extremely

important open question for this strand of research.

5.3.3 Alternative production function

As in Hassler et al. (2012), we consider now the case where total output is produced by a Leontief

production function—that is,

Yt = A(Dt) ·min[ζ ·Kα
1t · L1−α

1T , (1− ζ) · Et], (17)
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and we assume that energy is produced from dirty and clean energy, i.e.,

Et = Eγt
tc · E

1−γt
td . (18)

Clean and dirty energy, Etc and Etd, are produced in identical Cobb-Douglas production functions

with capital share α.

We set ζ = 0.1, γ0 = 0.08, and calibrate the stochastic process for γ in such a a way that in the

BAU scenario damages are the same as in our main calibration above.

Table 3 compares the key results for the two production functions. It shows that the optimal

Cobb-Douglas Leontief
Probability of disaster, BAU 0.05 0.05

Probability of disaster, opt. tax 0.025 0.049
Optimal fixed tax 0.2 0.1

Welfare gains 0.02 0.005

Table 3: Sensitivity with respect to the production function.

tax as well as welfare gains depend crucially on the specification of the production function. When

the clean energy share in the production of energy is low, and energy cannot readily substitute

for the intermediate input, carbon taxes have, as expected, a minimal impact on carbon emission.

Furthermore, the level of Pareto-improving carbon-taxes that can be sustained is very small.

6 Three sources of risk

This section incorporates all three types of shocks mentioned above. To model the stochastic damage

function, we assume that each period the shock εTP,t can realize two values—that is,

εTP,t =

 −
1
10

with prob 1
2
,

+ 1
10

with prob 1
2
.

Moreover, we assume that TP = 2.5 and TP = 3.5 are reflecting barriers for the random walk. As

explained above, when the current excess temperature reaches TP , the random walk stops at that

value. If the current tipping point is at 2.5 when the excess temperature reaches 2.5 degrees, very
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Figure 11: Distribution of damages (left panel) and aggregate consumption losses (right panel) after 100 years in
BAU scenario for full model.

significant damage is likely to result. If the current temperature never reaches the tipping point, the

damages are quite small.

While it seems clear that there are large uncertainties about economic damages from higher tem-

peratures, there is no unambiguous way to model them. As mentioned in the introduction, Golosov

et al. (2014) follow a somewhat similar strategy to ours and assume uncertainty about a coefficient

in the damage function. However, in their approach, all uncertainty is resolved at some given future

date, T̂ . At T̂ , their coefficient randomly takes one of two values and before T̂ , their coefficient is set

to the average of these two values. It seems more realistic to have the values evolve stochastically

over time.

Without carbon taxation, our three-shock model results in significant damages with fairly high

probability. Figures 11, 12, and 13 show the distribution of TFP-damages and aggregate consump-

tion losses for the 20 (corresponding to a duration of 100 years), 40 (200 years), and 100 (500 years)

periods. Since the temperature itself is not as meaningful, given the uncertainty in the damage func-

tion, we depict the distribution of aggregate consumption losses instead. The figures are normalized

in such a way that aggregate consumption at t=0 is 1.

Compared to the figures 2 and 10 from above, we see significant differences in damages. With
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Figure 12: Distribution of damages (left panel) and aggregate consumption losses (right panel) after 200 years in the
BAU scenario for full model.
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Figure 13: Distribution of damages (left panel) and aggregate consumption losses (right panel) after 500 years in the
BAU scenario for full model.

this third source of uncertainty, the probability of climate disasters increases to about nine percent17

17Note that in the figures presented here, the frequency of a climate disaster seems significantly lower than nine
percent. This is due to the fact that the climate sensitivity parameter follows a random walk and along some paths
the economy experiences transitory climate disasters, i.e., many climate disasters only occur before year 200 and many
only after year 200.
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compared to five percent in the model without a stochastic tipping point in the damage function. As

in the case in section 5, most disaster periods last for more than 100 years and many for more than 500

years. In this model, declines in aggregate consumption of almost 80 percent become possible, even

though they are unlikely. In the BAU scenario, some future generations are born into catastrophic

economies.

The level of climate risk we model in this section now also decreases average future utilities

significantly. Generations that are born 200 years from now have, in consumption equivalents, a

seven percent lower expected utility than generations born today.

6.1 Optimal carbon policy with all three shocks

As lower tipping points and larger damages become possible, substantial damage from climate change

can occur earlier in the model, making a larger initial tax feasible. With a fixed tax of 35 percent, we

find that the average welfare of generations born 200 years in the future increases (in consumption

equivalents) by around 4 percent. The probability of climate disasters decreases to around 3.5 percent.

Hence there is still substantial climate disaster risk that cannot be prevented by a constant tax rate.

It is useful to compare the taxes in the specification of the model with three sources of uncertainty

to optimal taxes in a deterministic model. In this thought experiment, we focus on the model with

much more significant damages to illustrate the role of uncertainty in the damage function. To do

this, we consider the calibration from section 3.1 (the ‘deterministic benchmark case’), but multiply

damages by a factor of 4—that is, the damage function becomes

Dt = 1− 4

1 +
(

1
20.46

TAt
)2

+
(

1
2TPt

TAt

)6.754 . (19)

This shifts up the damages depicted in Figure 1 by a factor of roughly 4 (not exactly because more

significant damages lead to a decrease in production and CO2 emissions) resulting in substantial

damages after 20 model periods. The Pareto-improving fixed tax rate that leads to the largest welfare

gains for generations born after 120 years is roughly about 20 percent.18 This results in maximal

18Note that this is still a much lower carbon tax than the optimal tax arising in realistically calibrated models with
growth and intergenerational transfers.
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welfare gains of about 1.5 percent for generations born after 110 years. This thought experiment

illustrates the significant quantitative effects of uncertainty. In a world of certainty, even if damages

are four times larger than in typical calibrations, taxes and welfare gains are still relatively small.

6.2 Carbon dependent taxes

If we allow taxes to vary over time and with the level of atmospheric carbon, we reduce the risk of

climate disasters even further by increasing the tax when CO2 concentration in the atmosphere in-

creases substantially. In order to keep the tax Pareto-improving, one needs to start with a substantial

initial tax and start increasing the tax relatively late when future generations already benefit from

the initial tax.

Note that in the presence of a stochastic damage function, it might not be sufficient to control

the concentration of CO2 in the atmosphere since a low tipping point might result in significant

damages. Moreover, imposing high carbon taxes once the CO2 concentration has reached a certain

level might itself lead to consumption disasters. In the presence of significant damages, these taxes

push aggregate consumption down further.

The “best”specification we could find imposes additional taxes earlier than above and increases

taxes very steeply once CO2 concentration has reached a given level. We set

τt = 0.3 +
1

10
max(0,

log(St/S)

log(2)
− 2)3, (20)

where St denotes the total amount of CO2 in the atmosphere.

Observe that taxes start increasing if the excess temperature (at a climate sensitivity of 3) is 2

degrees. Moreover, at a temperature increase (again with λ = 3) of more than 3 degrees, taxes start

rising very rapidly. Along some paths, carbon-risk taxes increase to over 100 percent.

In Figure 14 we depict the carbon tax rates for the periods where they are relevant (i.e. γt < 1)

for 600 simulated periods. The histogram shows that in the vast majority of periods taxes are 30

percent and therefore slightly lower than the optimal fixed tax of 35 percent above. However, it often

increases to more than 35 percent and in some cases well beyond that.

Using this specification, the probability of climate disaster is reduced to around 1.3 percent – a
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Figure 15: Tax rate and CO2 in atmosphere for fixed taxes.

much lower level than with a fixed tax. However, the welfare gains for future generations are very

similar to the case of a fixed tax. Generations born in around 150 years gain slightly less (because

some agents are born into economies that still use significant amounts of dirty energy and hence suffer

from higher taxes), whereas generations born after 250 years gain slightly more, but the differences

are below 0.5 percent.

Figures 15 and 16 show taxes and CO2 concentration in the atmosphere for the two cases of

constant taxes and risk taxes for a given path. On this path, the transition to clean energy takes

57 model periods, so this is a path for a high emission, high damage scenario. One can see that

risk-taxes increase dramatically after around 20 to 25 model periods, further reducing CO2 emissions
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Figure 16: Tax rate and CO2 in atmosphere for risk taxes.

significantly and leading to large welfare gains in the future. On average, a generation born after

40 model periods is still better off despite the fact that carbon taxes are 100 percent and the agents

born into this scenario are certainly worse off than in the constant tax scenario.

To decrease this likelihood even further, one could consider a tax rate that changes according to

variables other than CO2 concentration. However, it seems unrealistic to make the tax rate dependent

on the tipping point - after all, our modeling strategy is a simplified version of a model where agents

do not know the tipping point and learn it when it happens. After the tipping point is reached, it is

undoubtedly too late to increase taxes.

7 Conclusion

This paper examines the role of uncertainty in optimal carbon taxation. We argue that starting

from a model without uncertainty, the introduction of mean-preserving shocks can lead to significant

and long-lasting damages. Even with modest degrees of risk aversion, the welfare loss of future

generations can be significant and climate disasters can be quite frequent. Carbon-risk taxes can

achieve Pareto improvements and if they increase at a sufficient rate with CO2 concentration, they

can certainly help prevent climate disasters.

Although many aspects of the model are roughly calibrated, the parameters that we choose for

the relevant stochastic processes are very “conservative”in the sense that the true uncertainty is likely

to be much larger. Hence, our results provide lower bounds on possible damages and on improving
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carbon taxes. Finally, we show that carbon-risk tax rates can be as large, if not larger, than carbon

average-damage tax rates depending on which intergenerational policies are feasible.
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