An Empirical Approximation of the Effects of Trade Sanctions with an Application to Russia

Jean Imbs¹ Laurent Pauwels²

¹NYUAD, PSE, CEPR

jmi5@nyu.edu

²NYUAD, University of Sydney, CAMA (ANU) *Ilp9748@nyu.edu*

77th Economic Policy Panel Meeting 21 April 2023

K 4 E K 4 E

Imbs, Pauwels

æ

We now have frontier GE models to simulate the economic consequences of trade sanctions. (Baqaee-Farhi 2019, Huo et al 2023). Many applications to Russia's case (Bachmann et al 2002, Baqaee et al 2022, etc.)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

We now have frontier GE models to simulate the economic consequences of trade sanctions. (Baqaee-Farhi 2019, Huo et al 2023). Many applications to Russia's case (Bachmann et al 2002, Baqaee et al 2022, etc.)

A difficulty is calibration, particularly of elasticities of substitution. Hard to discipline, so extensive sensitivity analyses.

We now have frontier GE models to simulate the economic consequences of trade sanctions. (Baqaee-Farhi 2019, Huo et al 2023). Many applications to Russia's case (Bachmann et al 2002, Baqaee et al 2022, etc.)

A difficulty is calibration, particularly of elasticities of substitution. Hard to discipline, so extensive sensitivity analyses.

Policymakers / journalists often use shortcuts like trade exposure. But no guarantee that is accurate, or even relevant.

K = 3 × 4 = 5

We now have frontier GE models to simulate the economic consequences of trade sanctions. (Baqaee-Farhi 2019, Huo et al 2023). Many applications to Russia's case (Bachmann et al 2002, Baqaee et al 2022, etc.)

A difficulty is calibration, particularly of elasticities of substitution. Hard to discipline, so extensive sensitivity analyses.

Policymakers / journalists often use shortcuts like trade exposure. But no guarantee that is accurate, or even relevant.

We have to get rid of our dependency on Russian fossil fuels all over Europe. Last year, Russian gas accounted for 40% of our gas imports. Today it's down to 9% pipeline gas.

— Ursula Von Der Leyen, State of the Union 2022

Imbs, Pauwels

▲□▶▲□▶▲□▶▲□▶ □ のQで

э.

Approximation is actually akin to trade exposure but accounting for indirect trade. Which can be very different from direct trade exposure.

Approximation is actually akin to trade exposure but accounting for indirect trade. Which can be very different from direct trade exposure.

Apply the approximation to embargoes on Russian (energy) exports to EU and on EU exports to Russia.

Approximation is actually akin to trade exposure but accounting for indirect trade. Which can be very different from direct trade exposure.

Apply the approximation to embargoes on Russian (energy) exports to EU and on EU exports to Russia.

Compare results implied by approximation vs. exact responses in model

Imbs, Pauwels

ъ.

Both embargoes have small effects (< 1% GDP). Not surprising: As in the literature.

Both embargoes have small effects (< 1% GDP). Not surprising: As in the literature.

Small average effects mask enormous asymmetries:

Both embargoes have small effects (< 1% GDP). Not surprising: As in the literature.

Small average effects mask enormous asymmetries:

- Russia affected much more than EU by either embargo; Russia much more affected by ban on its exports to EU than by ban on its imports from EU.

Both embargoes have small effects (< 1% GDP). Not surprising: As in the literature.

Small average effects mask enormous asymmetries:

- Russia affected much more than EU by either embargo; Russia much more affected by ban on its exports to EU than by ban on its imports from EU.
- Within EU, small ex-Soviet Union "satellite" countries much, much more affected by either embargo than large West European countries.

Imbs, Pauwels

ъ.

Still, can use approximation as implied by measures of indirect trade to gauge availability of (historical) substitutes.

Still, can use approximation as implied by measures of indirect trade to gauge availability of (historical) substitutes.

Consider historical existence of alternative supply chains:

Still, can use approximation as implied by measures of indirect trade to gauge availability of (historical) substitutes.

Consider historical existence of alternative supply chains:

- Alternative to EU for Russia's exports very limited.

Still, can use approximation as implied by measures of indirect trade to gauge availability of (historical) substitutes.

Consider historical existence of alternative supply chains:

- Alternative to EU for Russia's exports very limited.
- Alternative to Russian imports for large West European economies readily exist.

Still, can use approximation as implied by measures of indirect trade to gauge availability of (historical) substitutes.

Consider historical existence of alternative supply chains:

- Alternative to EU for Russia's exports very limited.
- Alternative to Russian imports for large West European economies readily exist.
- Alternative to Russian imports for small ex-satellite East European countries virtually inexistent.

Still, can use approximation as implied by measures of indirect trade to gauge availability of (historical) substitutes.

Consider historical existence of alternative supply chains:

- Alternative to EU for Russia's exports very limited.
- Alternative to Russian imports for large West European economies readily exist.
- Alternative to Russian imports for small ex-satellite East European countries virtually inexistent.
- We show this happens because East European countries supply chains intimately interlinked with Russian economy. In particular pipelines are an important driving force.

1 Model

2 Approximation

3 Validation

④ Effects of Sanctions

G Conclusion

э.

Model

Production:

$$\mathsf{Y}_{i}^{r} = \mathsf{Z}_{i}^{r} \left[(\mathsf{H}_{i}^{r})^{\alpha^{r}} (\mathsf{K}_{i}^{r})^{1-\alpha^{r}} \right]^{\eta^{r}} (\mathsf{M}_{i}^{r})^{1-\eta^{r}}, \text{ where } \mathsf{M}_{i}^{r} = \left(\sum_{j} \sum_{s} (\mu_{ji}^{sr})^{\frac{1}{\epsilon}} (\mathsf{M}_{ji}^{sr})^{\frac{\epsilon-1}{\epsilon}} \right)^{\frac{\epsilon}{\epsilon-1}}$$

Households choose consumption to maximize:

$$\mathsf{U}\left(\mathsf{C}_{i}-\sum_{r}(\mathsf{H}_{i}^{r})^{1+\frac{1}{\psi}}\right) s.t. \mathsf{P}_{i}^{c}\mathsf{C}_{i}=\sum_{r}\mathsf{W}_{i}^{r}\mathsf{H}_{i}^{r}+\sum_{r}\mathsf{R}_{i}^{r}\mathsf{K}_{i}^{r},$$

where

$$\mathsf{C}_{i} = \left[\sum_{j}\sum_{s} (\nu_{ji}^{s})^{\frac{1}{\rho}} (\mathsf{C}_{jj}^{s})^{\frac{\rho-1}{\rho}}\right]^{\frac{\rho}{\rho-1}}.$$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

э.

Model (continued)

Market Clearing:

$$\mathsf{P}_i^r \mathsf{Y}_i^r = \sum_j \mathsf{P}_j^c \mathsf{C}_j \pi_{ij}^r + \sum_j \sum_s (1 - \eta^s) \mathsf{P}_j^s \mathsf{Y}_j^s \xi_{ij}^{rs},$$

with expenditure shares

$$\xi_{ij}^{rs} = \frac{\mu_{ij}^{rs} (\tau_{ij}^{r} \mathsf{P}_{i}^{r})^{1-\epsilon}}{\sum_{k,l} \mu_{kj}^{ls} (\tau_{kj}^{l} \mathsf{P}_{k}^{l})^{1-\epsilon}} \\ \pi_{ij}^{r} = \frac{\nu_{ij}^{r} (\tau_{ij}^{r} \mathsf{P}_{i}^{r})^{1-\rho}}{\sum_{k,l} \nu_{kj}^{l} (\tau_{kj}^{l} \mathsf{P}_{k}^{l})^{1-\rho}}$$

With financial autarky:

$$\mathsf{P}_i^r \mathsf{Y}_i^r = \sum_j \sum_s \eta^s \mathsf{P}_j^s \mathsf{Y}_j^s \pi_{ij}^r + \sum_j \sum_s (1 - \eta^s) \mathsf{P}_j^s \mathsf{Y}_j^s \xi_{ij}^{rs}.$$

æ

Deviations from steady state created by shocks to transport costs τ_{ii}^{r} (embargoes):

$$\ln \mathbf{V}_t = \frac{\alpha \psi}{1 + \psi} \left[\ln \mathbf{P} \mathbf{Y}_t - \ln \mathbf{P}_t^c \right],$$

where

$$\ln \mathbf{P}\mathbf{Y}_t = (\mathcal{P} + \mathbf{I})\mathbf{\Lambda}^{-1} \ln \mathbf{T}_t,$$

$$\ln \mathbf{P}_t^c = [(\mathbf{A}^c)^\top \otimes \mathbf{1}_R]\mathcal{P}\mathbf{\Lambda}^{-1} \ln \mathbf{T}_t.$$

Exact solution from steady state and calibrated values for $\ln T_t$.

ъ

$$\ln \mathbf{V}_t = \frac{\alpha \psi}{1 + \psi} \left[\ln \mathbf{P} \mathbf{Y}_t - \ln \mathbf{P}_t^c \right].$$

$$\ln \mathbf{V}_t = \frac{\alpha \psi}{1 + \psi} \bigg[\ln \mathbf{P} \mathbf{Y}_t - \ln \mathbf{P}_t^c \bigg].$$

Two steps:

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 21 April 2023

æ 👘

$$\ln \mathbf{V}_t = \frac{\alpha \psi}{1 + \psi} \left[\ln \mathbf{P} \mathbf{Y}_t - \ln \mathbf{P}_t^c \right].$$

Two steps:

1. Negligible response of CPI to embargo.

2

$$\ln \mathbf{V}_t = \frac{\alpha \psi}{\mathbf{1} + \psi} \left[\ln \mathbf{P} \mathbf{Y}_t - \ln \mathbf{P}_t^c \right].$$

Two steps:

- 1. Negligible response of CPI to embargo.
- 2. Empirical approximation of (%) response of nominal output to embargo.

イロト イヨト イヨト

ъ

"Hypothetical Extraction" Los, Timmer, and de Vries (2016)

Imbs, Pauwels

Approximating the Effects of Sanctions

< □ ▶ < 酉 ▶ < 亘 ▶ < 亘 ▶
 21 April 2023

э.

"Hypothetical Extraction" Los, Timmer, and de Vries (2016)

Two candidate approximations:

э

"Hypothetical Extraction" Los, Timmer, and de Vries (2016)

Two candidate approximations:

$$\ln \widetilde{\mathbf{PY}}_d = \left[(\mathbf{I} - \mathbf{A})^{-1} \ \mathbf{PC} - (\mathbf{I} - \widetilde{\mathbf{A}})^{-1} \ \widetilde{\mathbf{PC}} \right] \oslash \left[(\mathbf{I} - \mathbf{A})^{-1} \ \mathbf{PC} \right],$$

 $\tilde{\mathbf{A}}$ and $\widetilde{\mathbf{PC}}$ set to zero demand arising from embargoed countries k. Approximates $\frac{\ln P_{i,t}^r Y_{i,t}^r}{\ln \tau_{k,t}^r}$. Call this HOT.

"Hypothetical Extraction" Los, Timmer, and de Vries (2016)

Two candidate approximations:

$$\ln \widetilde{\mathbf{PY}}_d = \left[(\mathbf{I} - \mathbf{A})^{-1} \ \mathbf{PC} - (\mathbf{I} - \widetilde{\mathbf{A}})^{-1} \ \widetilde{\mathbf{PC}} \right] \oslash \left[(\mathbf{I} - \mathbf{A})^{-1} \ \mathbf{PC} \right],$$

 $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{PC}}$ set to zero demand arising from embargoed countries k. Approximates $\frac{\ln P_{i,t}^r Y_{i,t}^r}{\ln \tau_{k,t}^r}$. Call this HOT.

$$\ln \widetilde{\mathbf{PY}}_u = \left[(\mathbf{I} - \mathbf{B}^\top)^{-1} \ \mathbf{PVA} - (\mathbf{I} - \widetilde{\mathbf{B}}^\top)^{-1} \ \mathbf{PVA} \right] \oslash \left[(\mathbf{I} - \mathbf{B}^\top)^{-1} \ \mathbf{PVA} \right],$$

 $\tilde{\mathbf{B}}$ sets to zero intermediate inputs arising from embargoed countries k. Approximates $\frac{\ln P_{j,t}^s Y_{j,t}^s}{\ln \tau_{k,t}^r}$. Call this SHOT.

21 April 2023

• • = • • = •

Imbs, Pauwels

2

- Effect on EU value added is $\frac{\ln V_{EUR,t}^s}{\ln \tau_{RUS,EUR}^r}$, approximated as SHOT'

э.

- Effect on EU value added is $\frac{\ln V_{EUR,t}^{s}}{\ln \tau_{RUS,EUR}^{r}}$, approximated as SHOT^{rs}_{RUS,EUR}.
- Effect on Russia's value added is $\frac{\ln V_{RUS,t}^{r}}{\ln \tau_{RUS,EUR}^{r}}$, approximated as HOT^r_{RUS,EUR}.

• • = • • = •

- Effect on EU value added is $\frac{\ln V_{EUR,t}^{s}}{\ln \tau_{RUS,EUR}^{r}}$, approximated as SHOT^{rs}_{RUS,EUR}.
- Effect on Russia's value added is $\frac{\ln V'_{RUS,t}}{\ln \tau'_{RUS,EUR}}$, approximated as HOT'_{RUS,EUR}.

Consider embargo on European exports to Russia:

- Effect on EU value added is $\frac{\ln V_{EUR,t}^{s}}{\ln \tau_{RUS,EUR}^{r}}$, approximated as SHOT^{rs}_{RUS,EUR}.
- Effect on Russia's value added is $\frac{\ln V'_{RUS,t}}{\ln \tau'_{RUS,EUR}}$, approximated as HOT'_{RUS,EUR}.

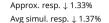
Consider embargo on European exports to Russia:

- Effect on EU value added is $\frac{\ln V'_{\text{EUR},t}}{\ln \tau'_{\text{EUR,RUS}}}$, approximated as HOT'_{EUR,RUS}.

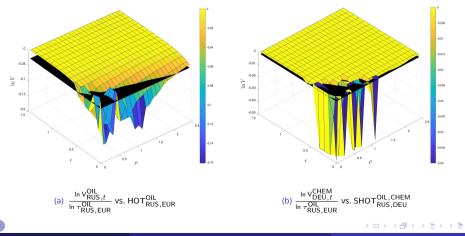
- Effect on EU value added is $\frac{\ln V_{EUR,t}^{s}}{\ln \tau_{RUS,EUR}^{r}}$, approximated as SHOT^{rs}_{RUS,EUR}.
- Effect on Russia's value added is $\frac{\ln V'_{RUS,t}}{\ln \tau'_{DUS,EUR}}$, approximated as HOT'_{RUS,EUR}.

Consider embargo on European exports to Russia:

- Effect on EU value added is $\frac{\ln V'_{\text{EUR},t}}{\ln \tau'_{\text{FUR,RUS}}}$, approximated as HOT'_{EUR,RUS}.
- Effect on Russia's value added is $\frac{\ln V_{RUS,t}^s}{\ln \tau_{EUR,RUS}^r}$, approximated as SHOT^{*ts*}_{EUR,RUS}.


- Effect on EU value added is $\frac{\ln V_{EUR,t}^s}{\ln \tau_{RUS,EUR}^r}$, approximated as SHOT^{rs}_{RUS,EUR}.
- Effect on Russia's value added is $\frac{\ln V_{RUS,t}^{\prime}}{\ln \tau_{PUS}^{\prime} \exp}$, approximated as HOT^r_{RUS,EUR}.

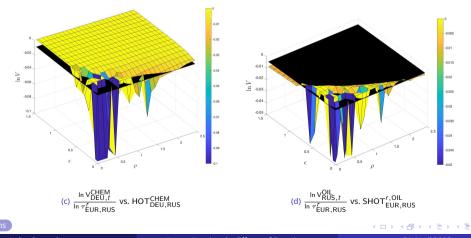
Consider embargo on European exports to Russia:


- Effect on EU value added is $\frac{\ln V'_{\text{EUR},t}}{\ln \tau'_{\text{EUR,RUS}}}$, approximated as HOT'_{EUR,RUS}.
- Effect on Russia's value added is $\frac{\ln V_{RUS,t}^s}{\ln \tau_{EUR,RUS}^r}$, approximated as SHOT^{*ts*}_{EUR,RUS}.

HOT and SHOT computed using OECD's ICIO in 2018. Later using EXIOBASE 2021 for detailed energy data.

Validation: Embargo on Russia's Oil Exports to EU

Approx. resp. \downarrow 0.08% Avg. simul. resp. \downarrow 0.01%



13/33

э

Validation: Embargo on all European exports to Russia

Approx. resp. $\downarrow 0.97\%$ Avg simul. resp. $\downarrow 0.6\%$ Approx. resp. $\downarrow 0.5\%$ Avg. simul. resp. $\downarrow 0.9\%$

э

By definition,

$$\ln \mathbf{V}_t \simeq \frac{\alpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶
 21 April 2023

2

By definition,

$$\ln \mathbf{V}_t \simeq rac{lpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

Responses to upstream shocks:

By definition,

$$\ln \mathbf{V}_t \simeq rac{lpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

Responses to upstream shocks:

- Country:
$$\ln V_{j,t} / \ln \tau_{ij}^r \simeq \sum_s \left(\frac{VA_{j,t}^s}{\sum_s VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1+\psi} \operatorname{SHOT}_{ij}^{rs}$$

By definition,

$$\ln \mathbf{V}_t \simeq \frac{\alpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

Responses to upstream shocks:

- Country:
$$\ln V_{j,t} / \ln \tau_{ij}^r \simeq \sum_s \left(\frac{VA_{j,t}^s}{\sum_s VA_{j,t}^s}\right) \frac{\alpha'\psi}{1+\psi} \text{SHOT}_{ij}^{rs}$$

- Sector: $\ln V_t^s / \ln \tau_{ij}^r \simeq \sum_j \left(\frac{VA_{j,t}^s}{\sum_j VA_{j,t}^s}\right) \frac{\alpha'\psi}{1+\psi} \text{SHOT}_{ij}^{rs}$

By definition,

$$\ln \mathbf{V}_t \simeq rac{lpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

Responses to upstream shocks:

- Country:
$$\ln V_{j,t} / \ln \tau_{ij}^r \simeq \sum_s \left(\frac{VA_{j,t}^s}{\sum_s VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1+\psi} \text{SHOT}_{ij}^{rs}$$

- Sector: $\ln V_t^s / \ln \tau_{ij}^r \simeq \sum_j \left(\frac{VA_{j,t}^s}{\sum_j VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1+\psi} \text{SHOT}_{ij}^{rs}$

Response to downstream shocks:

ъ

By definition,

$$\ln \mathbf{V}_t \simeq \frac{\alpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

Responses to upstream shocks:

- Country:
$$\ln V_{j,t} / \ln \tau_{ij}^r \simeq \sum_s \left(\frac{VA_{j,t}^s}{\sum_s VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1 + \psi} \text{SHOT}_{ij}^{rs}$$

- Sector:
$$\ln V_t^s / \ln \tau_{ij}^r \simeq \sum_j \left(\frac{VA_{j,t}^s}{\sum_j VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1+\psi} \operatorname{SHOT}_{ij}^{rs}$$

Response to downstream shocks:

- Country:
$$\ln V_{i,t} / \ln \tau_{ij}^r \simeq \sum_r \left(\frac{VA_{i,t}^r}{\sum_r VA_{i,t}^r} \right) \frac{\alpha^r \psi}{1+\psi} \operatorname{HOT}_{ij}^r$$

• • = • • = •

э.

By definition,

$$\ln \mathbf{V}_t \simeq \frac{\alpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

Responses to upstream shocks:

- Country:
$$\ln V_{j,t} / \ln \tau_{ij}^r \simeq \sum_s \left(\frac{VA_{j,t}^s}{\sum_s VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1+\psi} \operatorname{SHOT}_{ij}^{rs}$$

- Sector:
$$\ln V_t^s / \ln \tau_{ij}^r \simeq \sum_j \left(\frac{VA_{j,t}^s}{\sum_j VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1+\psi} \operatorname{SHOT}_{ij}^{rs}$$

Response to downstream shocks:

- Country:
$$\ln V_{i,t} / \ln \tau_{ij}^{r} \simeq \sum_{r} \left(\frac{VA_{i,t}^{r}}{\sum_{r} VA_{i,t}^{r}} \right) \frac{\alpha^{r}\psi}{1+\psi} HOT_{ij}^{r}$$

- Sector: $\ln V_{t} / \ln \tau_{ij}^{r} \simeq \sum_{i} \left(\frac{\sum_{r} VA_{i,t}^{r}}{\sum_{i} \sum_{r} VA_{i,t}^{r}} \right) \left[\sum_{r} \left(\frac{VA_{i,t}^{r}}{\sum_{r} VA_{i,t}^{r}} \right) \frac{\alpha^{r}\psi}{1+\psi} HOT_{ij}^{r} \right]$

• • = • • = •

э.

Approximate effects of an embargo on Russian Energy Exports (incl. Natural Gas)

Effects on Russia	Effects on European countries				
Energy producing products	10.46	Refined petroleum products	1.47	BGR	1.09
Mining support service activities	2.42	Basic metals	0.50	LTU	0.50
Transport by land & pipelines	1.20	Electricity, gas, steam	0.42	SVK	0.43
Administrative services	1.00	Air transport	0.40	HUN	0.40
Manufacturing nec	0.82	Other non-metallic minerals	0.31	LVA	0.33
Warehouse & transport services	0.78	Non-energy producing products	0.31	CZE	0.30
Water transport	0.71	Chemical products	0.27	POL	0.29
Non-energy producing products	0.64	Transport by land & pipelines	0.25	FIN	0.20
Machinery & equipment, nec	0.45	Water transport	0.23	ROU	0.17
Rubber & plastics products	0.39	Energy producing products	0.20	SVN	0.13
Total Effect	1.37		Total	effect	0.08

э

Approximate effects of an embargo on Russian Energy Exports (incl. Natural Gas)

Effects on Russia	ia Effects on European countries				
Energy producing products	10.46	Refined petroleum products	1.47	BGR	1.09
Mining support service activities	2.42	Basic metals	0.50	LTU	0.50
Transport by land & pipelines	1.20	Electricity, gas, steam	0.42	SVK	0.43
Administrative services	1.00	Air transport	0.40	HUN	0.40
Manufacturing nec	0.82	Other non-metallic minerals	0.31	LVA	0.33
Warehouse & transport services	0.78	Non-energy producing products	0.31	CZE	0.30
Water transport	0.71	Chemical products	0.27	POL	0.29
Non-energy producing products	0.64	Transport by land & pipelines	0.25	FIN	0.20
Machinery & equipment, nec	0.45	Water transport	0.23	ROU	0.17
Rubber & plastics products	0.39	Energy producing products	0.20	SVN	0.13
Total Effect	1.37		Total	effect	0.08

Evenett-Muendler (2022): -0.58% long run effect in Russia of ban on Russian oil and gas.

イロト イヨト イヨト

э

Approximate effects of an embargo on all Russian Exports

Effects on Russia Effects on European countries					
Energy producing products	12.30	Refined petroleum products	2.25	BGR	1.82
Air transport	9.21	Basic metals	1.49	LTU	1.22
Mining support service activities	7.63	Air transport	1.19	LVA	1.03
Postal & courier activities	6.40	Water transport	0.80	EST	0.99
Basic metals	6.18	Other non-metallic minerals	0.68	CYP	0.89
Refined petroleum products	6.01	Chemical products	0.66	SVK	0.83
Water transport	5.96	Non-energy producing products	0.66	HUN	0.79
Warehouse & transport services	5.95	Electricity, gas, steam	0.65	POL	0.68
IT	5.65	Fabricated metal products	0.62	FIN	0.68
Transport by land & pipelines	5.65	Transport by land & pipelines	0.62	CZE	0.65
Total effect	3.62		Total	effect	0.23

Approximate effects of an embargo on all Russian Exports

Effects on Russia Effects on European countries					
Energy producing products	12.30	Refined petroleum products	2.25	BGR	1.82
Air transport	9.21	Basic metals	1.49	LTU	1.22
Mining support service activities	7.63	Air transport	1.19	LVA	1.03
Postal & courier activities	6.40	Water transport	0.80	EST	0.99
Basic metals	6.18	Other non-metallic minerals	0.68	CYP	0.89
Refined petroleum products	6.01	Chemical products	0.66	SVK	0.83
Water transport	5.96	Non-energy producing products	0.66	HUN	0.79
Warehouse & transport services	5.95	Electricity, gas, steam	0.65	POL	0.68
IT	5.65	Fabricated metal products	0.62	FIN	0.68
Transport by land & pipelines	5.65	Transport by land & pipelines	0.62	CZE	0.65
Total effect	3.62		Total	effect	0.23

- Evenett-Muendler (2022): ban on Russian oil and gas and 35% tariff increase on the rest reduces Russian GDP by 1.06% in the long run.

- Bachmann et al (2022): ban on Russian coal, oil, and gas reduces German GDP by 0.2-0.3%. Here effect on Germany is 0.23%.
- Baqaee et al (2022): ban on Russian coal, oil, and gas reduces French GDP by <0.2%. Here effect on France is 0.13%.

イロト イヨト イヨト イヨ

Approximate effects of an embargo on all EU Exports

Effects on Eu	ropean countries	Effects on Russia			
CYP	0.12	Motor vehicles	6.32		
LTU	0.06	Rubber & plastics products	5.23		
EST	0.06	Machinery & equipment, nec	4.53		
LVA	0.04	Other transport equipment	4.33		
IRL	0.04	Electrical equipment	3.96		
FIN	0.03	Manufacturing nec	3.53		
SVK	0.02	Paper products & printing	3.22		
CZE	0.02	Air transport	3.05		
SVN	0.02	Fabricated metal products	2.96		
BGR	0.02	Pharmaceutical products	2.89		
Total effect	0.01	Total effect	0.48		

Substitution is assumed away in empirical approximation of $\ln V_{i,t}$.

Propose an approximation to availability of substitute markets.

Compute shares of production that historically served alternative markets (HOT) / used alternative inputs (SHOT).

Compare with shares of output lost because of embargo.

Do it for sectors most affected by European embargo on Russian energy / total exports.

イロト イヨト イヨト

= nar

Substitute downstream markets for Russia exports (HOT)

European embargo on Russia's Petroleum					
		Substit	ute cou	ntries	
Most affected Russian sectors	EUR	USA	CHN	TUR	
Refined petroleum products	25.39	4.51	4.30	3.53	
Mining support service activities	12.27	2.18	2.08	1.71	
Energy producing products	4.35	0.77	0.74	0.60	
European embargo on R	ussia's Fi	nergy seg	tors		
			ute cou	ntries	
Most affected Russian sectors	EUR	CHN	ISR	KOR	
Energy producing products	34.02	17.07	2.77	2.75	
Mining support convisos		2 2 2	0.64		
Mining support services	7.88	3.96	0.64	0.64	

European embargo on all Russian sectors

Most affected Russian sectorsEURCHNKORISREnergy producing products39.9818.393.443.05Refined petroleum products29.565.983.631.56Mining support services24.806.852.391.39			Substit	tute cou	Intries
Refined petroleum products29.565.983.631.56Mining support services24.806.852.391.39	Most affected Russian sectors	EUR	CHN	KOR	ISR
Mining support services 24.80 6.85 2.39 1.39	Energy producing products	39.98	18.39	3.44	3.05
Mining support services 24.80 6.85 2.39 1.39	Refined petroleum products	29.56	5.98	3.63	1.56
	Mining support services	24.80	6.85	2.39	

21 April 2023

20/33

ъ

Substitute upstream markets for Europe imports (SHOT)

European embargo on Russia's Energy			Substitute countries				
	FRA	SAU	KAZ	NOR			
Refined petroleum products	6.59	8.86	4.87	3.23			
Electricity, gas, steam	1.82	2.25	1.24	0.82			
Basic metals	0.64	0.56	0.31	0.21			
	DEU	NOR	KAZ	USA	GBR		
Refined petroleum products	6.80	9.48	2.31		2.00		
Energy producing products	3.67	5.24	1.28		1.11		
Electricity, gas, steam	1.74	1.63	0.40	0.57			
	LVA	GBR	USA	NOR			
Refined petroleum products	32.64	0.03	< 0.01	< 0.01			
Electricity, gas, steam	13.20	0.02	<0.01	<0.01			
Other non-metallic minerals	12.58	<0.01	<0.01	<0.01			
	BGR	ZAF	TUR	USA			
Refined petroleum products	44.80	0.02	0.02	<0.01			
Electricity, gas, steam	25.69	0.26	0.16	< 0.01			
Other non-metallic minerals	23.27	0.06	0.05	<0.01	★ 4 @ ★ 4 3		
Approv	instation the Effe				21 April 20		

Approximating the Effects of Sanctions

1/33

Substitute upstream markets for Europe imports (SHOT)

	European embargo on all Russian sectors			Substitute countries				
			FRA	SAU	KAZ	USA	CHN	NOR
	Refined petroleum proc Electricity, gas, steam Basic metals	ducts	9.75 2.75 1.86	8.98 2.30	5.75 1.47 2.30	2.87 1.37	1.36	3.42 0.89
			DEU	NOR	USA	KAZ	GBR	CHN
	Refined petroleum proc Energy producing prod Basic metals		10.80 5.87 5.48	10.02 5.65 2.40	2.41 2.16 2.69	2.74 1.52	2.59 1.82 1.14	1.33
			LVA	USA	CHN	GBR	NOR	
-	Refined petroleum proc Electricity, gas, steam Other non-metallic min		47.99 20.28 19.38	0.43 0.41 0.37	0.25 0.23 0.52	0.20 0.23	0.34	
			BGR	TUR	CHN	GBR	ZAF	
-	Refined petroleum proc Electricity, gas, steam Other non-metallic min		65.37 37.08 34.35	0.96 0.49 1.46	0.46 0.61	0.29 0.18 0.25	0.30 < □ ▶ < <i>酉</i>	→ < ≥ > < ≥
Imb	s, Pauwels	Арр	roximating the Effect	ts of Sanctic	ons		21	April 2023

22/33

Direct vs indirect trade - embargo on Russian Petroleum (in %)

Country	HOT	Direct Exports	Ratio	Country	HOT	Direct Exports	Ratio
CZE	0.35	0.01	40.63	HRV	0.05	0.01	4.05
SVK	0.36	0.03	14.32	BEL	0.64	0.16	4.02
LTU	0.29	0.03	9.00	AUT	0.06	0.02	3.93
BGR	0.70	0.08	8.72	DNK	0.96	0.27	3.56
MLT	0.01	< 0.01	7.68	IRL	0.24	0.07	3.50
LUX	< 0.01	< 0.01	6.35	GRC	1.55	0.48	3.23
FIN	0.79	0.15	5.36	EST	0.13	0.04	3.18
POL	2.09	0.40	5.27	ROU	0.38	0.12	3.08
HUN	0.66	0.13	4.96	SVN	0.07	0.03	2.79
SWE	0.84	0.17	4.87	FRA	2.21	0.80	2.76
NLD	1.02	0.24	4.20	DEU	5.79	2.27	2.55
ITA	1.97	0.47	4.19	ESP	0.70	0.28	2.52
PRT	0.25	0.06	4.19	GBR	3.19	1.39	2.30
LVA	0.09	0.02	4.10	CYP	0.01	<0.01	2.10

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The ratio of indirect to direct trade reflects the intensity of value chains.

Small Eastern European countries are much more integrated with Russia through value chains.

And therefore much more dependent.

э.

We explore the importance of transport infrastructure to account for these enormous asymmetries.

Compute SHOT^{r,s} for (i,r) = (Russia, Transport via Pipelines) (j,s) = (EU country, Production of Electricity using gas).

Estimates how much production of electricity using gas in country j depends on Russian pipelines.

Data comes from EXIOBASE in 2021: 163 industries for 44 countries. Sectors such as "Poultry Farming" or "Reprocessing of secondary wood material".

• • = • • = •

= 900

Dependence on Russian pipelines (Electricity Production)

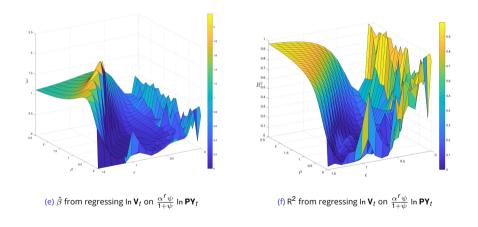
Country	SHOT	Country	SHOT
SWE	0.023	LUX	0.003
LTU	0.019	SVK	0.002
CZE	0.019	EST	0.002
ROU	0.018	DEU	0.002
HUN	0.015	BGR	0.002
FRA	0.014	ESP	0.002
ITA	0.007	FIN	0.001
HRV	0.005	BEL	0.001
SVN	0.005	GRC	0.001
PRT	0.004	IRL	0.001
DNK	0.004	GBR	0.001
LVA	0.003	NLD	0.001
POL	0.003		
AUT	0.003		

Data-based approximation to effects of trade embargoes. No substitution, and therefore no elasticity calibration.

Not a replacement to precise estimates from GE models - but practical to conduct simple and relevant experiments without a need for calibration.

Document small effects of trade embargoes involving Russia - though enormously asymmetric, especially within the EU.

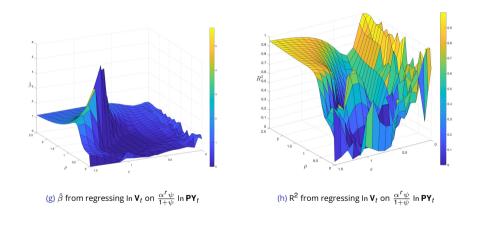
Show that most affected countries by embargoes (East Europe) are also most dependent on Russia, esp. as far as transport infrastructure.


Illustration of approximation's potential. HOT and SHOT to be made available online.

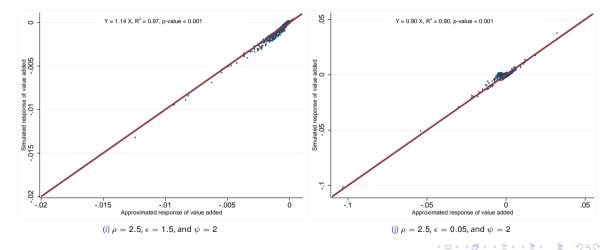
A ロ ト 4 回 ト 4 三 ト 4 三 ト 9 0 0 0

Thank you

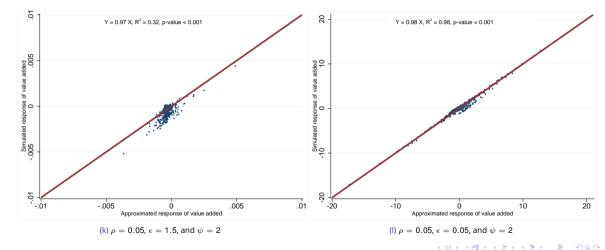
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタぐ


Validation: Embargo on Russia's Oil Exports to EU

21 April 2023


29/33

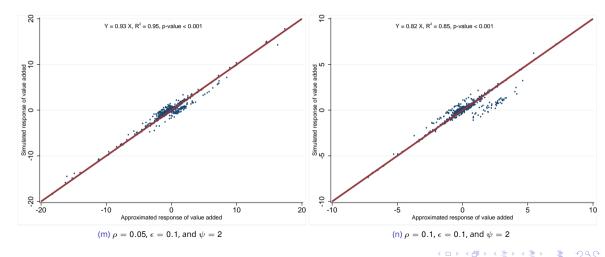
Validation: Embargo on all European exports to Russia


Response of value added to a Russian Oil shock

Approximating the Effects of Sanctions

21 April 2023 31 / 33

Response of value added to a Russian Oil shock



Imbs, Pauwels

Approximating the Effects of Sanctions

21 April 2023 32 / 33

Response of value added to a Russian Oil shock

Imbs, Pauwels

Approximating the Effects of Sanctions

21 April 2023 33/33